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In  a horizontal layer of fluid, thermal expansion or the presence of dissolved 
salt may cause a density gradient opposite to the direction of gravity. In  such 
cases, when the buoyancy forces are sufficient to overcome the dissipative effects, 
the static state becomes unstable and convective motions arise. If the layer is 
infinitely large in horizontal extent, the non-linear convection problem is highly 
degenerate, admitting many different steady-state solutions. A general necessary 
criterion for stability of such non-linear steady solutions is developed here for the 
case in which a homogeneous vertical magnetic field acts on the fluid. The criterion 
is demonstrated for two rigid bounding surfaces which are perfect thermal and 
electrical conductors, but it is applicable to more general kinds of boundary 
conditions. 

1. Introduction 
If a problem has several steady solutions, as is the case in convection processes, 

general stability criteria are quite desirable not only for the purpose of deter- 
mining the preferred solution but also in order to gain knowledge about the 
instability mechanism itself. The idea for the present work arose from the 
criticism on mathematical grounds of the so-called ‘relative stability ’ criterion 
of Malkus & Veronis (1958). They try to investigate the stability of a given steady 
state only with the aid of ‘power integrals’ of the stability equations and the 
stationary equations, by assuming that the disturbance has the form of a steady 
solution times a time-dependent factor. The separation assumption can be 
achieved by considering only infinitesimal disturbances which satisfy linear 
equations and which separate into a product of a space-dependent function and 
an exponential time function. However, the space-dependent part is then not in 
the form of a steady solution because the change of the form of a normalized 
disturbance is of the same order as the amplitude of the steady solution and the 
distortion of the disturbance due to interactions with the steady field is in general 
different from the steady field itself. Since we know that a t  a, marginal point, i.e. 
zero amplitude, none of the steady solutions is preferred, the stability properties 
depend on the distortion of the disturbance by interaction with the steady-state 
field. So when Malkus & Veronis ‘restrict the class of disturbances to those which 
have the form of steady solutions’ one has to take into account the possibility 
that the class of disturbances considered may be empty. Nevertheless, the cri- 
terion itself, which states that only the solution with maximum heat transport, 
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or more generally maximum amplitude, is stable, is correct if the amplitude is 
small enough, as will be shown in a forthcoming paper by Schluter, Lortz & 
Busse. But for large amplitude motions, when amplitude expansions are no 
longer valid or impossible to carry out, the stability theory of convection pro- 
cesses is still quite unsatisfactory. 

We shall consider the effects of an external magnetic field. In  this case even the 
linear theory, treated in Chandrasekhar (1961), is rather complex. However, 
the advantage of the following method is that the equations do not have to be 
solved since only certain general properties of their solutions are dealt with. 
This enables us to take into account also diffusion processes through the layer 
which lead to additional buoyancy forces. The reader will notice that the con- 
clusions remain almost unchanged if not only one but an arbitrary number of 
different kinds of materials diffuse through the layer. 

2. The fundamental equations 
Consider a horizontal fluid layer of depth d, on which the following forces act 

in the vertical direction described by the unit vector hi: the buoyancy force, 
due to gravity and changes in density; a homogeneous magnetic field of strength 
H ;  and any conservative force with potential ‘V. Then by using the so-called 
Boussinesq approximation, the Navier-Stokes equations and the equation of 
continuity can be written (see, for instance, Chandrasekhar 1961, where the 
same notation is used with 8, = a/& ai = alas,) 

a,ui + u,aiui - (/+np) H~ aiHi = VAU, - (6p/p,) qhi 

- a i r p / p + ( p p r p ) ~ , H j +  V + ~ X ~ A , ] ,  (2.1) 

and ajui = 0. (2.2) 

The kinematic viscosity v, the magnetic permeability p, and the gravity accelera- 
tion g are assumed to be constants throughout the layer. 

If the fluid has constant resistivity 7 then from the basic equations of hydro- 
magnetics one can derive the equations 

and 

for the magnetic field Hi. In  accordance with the Boussinesq approximation we 
have further the heat equation 

atT+ujajT = KTAT (2.5) 

for the temperature T ,  and we treat the coefficient of thermometric conductivity 
KT as a constant of the fluid. 

If there is something dissolved with concentration S in the fluid, we write 
the conservation equation as 

a,s+ujais = K S a s ,  (2.6) 

where we have made use of (2 .2) .  As with the other coefficients, we regard the 
diffusion coefficient K~ as a material constant. 
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Equations (2.1), (2.2), (2.3), (2.4), (2.5) and (2.6) must be supplemented by an 
equation of state, which we approximate by 

P = Po[l-a~(T-To) +as(S-So)I, 

which takes into account the fact that the fluid becomes denser on decreasing 
the temperature or increasing the concentration of the dissolved material. 

Let us assume that the plane surfaces between which the fluid is confined 
are perfect conductors for heat and electric current and that they are maintained 
a t  constant temperature and constant concentration. When no motion is present, 
the steady solution of (2.3) and (2.4) is the externally given homogeneous field 
of strength H ,  and the solutions of (2.5) and (2.6) are linear functions described 
by the constant gradients IT and Is respectively. So for the convective state 
let us write 

where 6, s, hi are the deviations from the static state of temperature, concentra- 
tion, and magnetic field, respectively. 

Our fundamental system of equations takes the form 

a,ui + ujajui- (,u/~~TP) hjajhi = V A U ~  + (aT 6+ ass) gAi 

! + (pU/4np) HAj 8, hi - ai w,  

+ ( ~ / 8 ~ p ) H j ~ +  V + g x j A j + ~ ( a T 8 ~ + a S 8 ~ ) g x ~ h , x j h j ,  

I (2") 

I 

a,hi+ujajhi-hjajui = rAhi+Hhjajui, 

8,s + U$j6 = KT A6 + @ ~ U j h j ,  

a,S + ujajs = K~ AS -I- pSujhj, 
a.u. = 8.h. = 0. 

3 3  3 3  

By substituting 

ui = u;, t = ( a 2 1 4  t', xi = ax;, 6 = pTaei, 
s = pSdss', hi = Hh;, o = ( v 2 / d 2 ) d ,  

in (3.7) and afterwards dropping the primes, (2.7) takes the dimensionless form 

(2.8) 

(2.9) 
(2.10) 

a,ui+ U j a j u i -  Mhjaj hi = A u ~  - aiw + (RT8 + R ~ s )  Ai+.MajAjhi, 

Ma,hi+Muja,hi- Mhjajui = MP,Ahi+ MAjajui, 

RT a,6 + 3, U j  aj 6 = RTPT A6 f RT hj U j ,  

R, a, s + R, uj aj s = R, Ps AS + R, Aj uj, 
aju, = ajhj = 0, 

where M = pH2d2/4np, R, = aTPTgd4/l'2, RS = asPsgd4U/v2, 

PH = T / V ,  PT = K ~ / v ,  Ps = K,y/1'. 

Let us recall the names of some of these dimensionless numbers; Pp'RT is the 
Rayleigh number and P,jl is the Prandtl number. One of our basic assumptions 
is the constancy of all the material coeEcients which occur, although in real fluids 
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these coefficients depend on the temperature, the concentration, and perhaps on 
the magnetic field. The external parameters of the convective state are described 
only by the numbers (2.9), and from their form we see that if these numbers 
are fixed and the depth d is large enough, the differences of temperature and 
concentration and the magnetic field will be small enough for the material co- 
efficients to be sufficiently constant. 

3. The boundary conditions 
If we are concerned with rigid bounding-surfaces such as metal, we have to 

require that the velocity vector ui must vanish at  the surface because viscosity 
prevents the fluid from slipping. Since T and S are fixed a t  the surface, 0 and s 
have to vanish there. The requirement that the adjoining medium be a perfect 
conductor leads to the boundary condition that the vertical component of the 
magnetic field hi and the vertical derivative of the vertical component of the 
current density have to vanish. So our full set of boundary conditions is 

ui = 0, 0 = 0,  s = 0, hihi = 0, ajhihiEiklakhl = 0, (3.1) 

at the planes between which the fluid is confined. In  horizontal directions we 
assume the layer to be infinite, and we require all occurring functions to be 
bounded. 

Let us now look at  the signs of the dimensionless numbers (2.9) and (2.10). 
M ,  PH, P,, and P, are always positive while R, and R, may have either sign. 
But if R, and R, both have negative signs it would mean that the buoyancy force 
is negative, and it is physically obvious that in such a case no convection is 
possible. This can also be seen mathematically. Multiply the first of (2.8) by 
ui (forming the scalar product), the second by hi, the third by - 8, the fourth by 
- s, add the results, and average over the whole layer; then 

i a i [ ( u i ~ i ) ~ +  M(hihi)m - R,(02),- RS(s2),] = (u~Au~) ,  + MPH(hiAhi)m 

-R,P,(~A~),-R,P,(sAs),, (3.2) 

where ( )m denotes the average. The other terms cancel or can be transformed into 
surface integrals which vanish in consequence of the boundary conditions (3.1). 
Using Green’s theorem and the boundary conditions, the right-hand side of (3.2) 
can be transformed into 

which is negative definite if neither R, nor R, is positive. So as time goes on 
the positive definite expression on the left-hand side of (3.2) tends to zero for 
any initial condition. This means that the static state is asymptotically stable. 

4. Reduction of the vector equations to scalar equations 
It is quite clear that the non-linear system (2.8), together with the boundary 

conditions (3.1), is a problem of considerable complexity. Yet the whole system 
has certain symmetries, which we shall now discuss. 
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Let us write the general integrals of the continuity equation in a form which is 
appropriate to the geometry of the present problem. Weintroduce the differential 
operators 

Then ui = 6ivl+yiv2 (4.2) 

is a solution of (2.2) for arbitrary differentiable functions vl, v,, which we may 
call potentials of the velocity. The analogous form to (4.2) for the magnetic field 

(4.3) 
is 

hi = si 91 + yig,. 

By operating on the first equation of (2.8) with Si and then with yi ,  we find 

at A2 A v ~  + Si( uj aj ui - Mhj aj hi) = A, A2v1 - A,( RT 6 + R,y S) + Miij hj A2 Ag1, 

atA2v, + yi(ujajui - Mhjajhi)  = A,Av, + Majhj A2g2, 

where A2 E A -  ajhja,h, 

is the two-dimensional Laplacian operator in the horizontal plane. Operating 
on the second vector equation of (2.8) with - 6i and then with - yi yields 

-2Cfi$A,Agl- MSi(ujajhi- hjajui) = - MPHA2A2gl- MaihjA,Avl, 

- Ma,A,g,-Myi(ujaihi- hjaiai) = -MP,A,Ag,- MaihiAZ~2. 

Finally, after substituting (4.2) and (4.3) into the non-linear terms, we have six 
scalar equations for the set of six scalar variables vl, v,, g,, g,, 8, s, which we abbre- 
viate by v. The boundary conditions for them can be found with the aid of equa- 
tions (2.8), (3.1), (4.2) and (4.3). They are 

vl = ajhivl = t l ,  = g1 = ajhia,A,g1 = ajnjg, = 8 = s = 0 (4.4) 

on the bounding surface of the fluid. 
To shorten the writing work we introduce the matrix differential operators 

-JIPfIA,A 0 O I ’  
0 

0 

0 

A2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

MA, A 

0 

0 

0 
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and a vector valued quadratic differential operator by 

6i [ (6 jv ;+~jv i )  aj(6,v,+Y,v,)-M(6jg;+Yjg~) a j ( S i g 1 + ~ i g A l  

Y,c(6jv;+Yjv;) aj(~ivl+Y,vZ)  -M(6,9;+Yjs;) aj&s, +risz)l 
-M6,[(6,v; + rjv;, aj(49, +YiS,) - (8,s; + YjdJ  aj(&vl +YiV,) l  

- MYi W j  v; + rj 4) a,(&, 9, + Yi 92) - (6j s; + Yj 9;) aj(4 flu1 + Yi V 2 ) l  

R,(sjz.'; + yjv;, ajs 

RT(6jvU; + rj v;) aj6 

a, uv + &(v, v) = vv. (4.5) 

&(v',v) = 

Then our system of six scalar equations can be written 

The operators contain the dimensionless numbers (2.9), which describe the 
external physical parameters, and the numbers (2. lo), which describe the proper- 
ties of the fluid. For the discussion of how the amplitude of v depends on the 
various parameters, we shall change RT and hold all other numbers fixed, though 
the problem (4.5) is completely symmetric in RT and R,, i.e. in 8 and s. 

Steady solutions satisfy the equation 

&(v,v) = 'VV. (4.61 

To test their stability we superimpose small disturbances v" on to the steady func- 
tions v, and after linearizing we derive from (4.5) the stability equation 

aUG+ &(v, 6) + &(v", v) = vv", 

aka = av". 

(4.7) 

where we have made an exponential ansatz for the time-dependence by setting 

We regard the stability equations (4.7) together with the boundary conditions 
(4.4) as an eigenvalue problem for the growth rate a. The stability problem is then 
whether or not equation (4.7) has positive eigenvalues a for a given steady- 
state v. 

5. The properties of the linear system 

mal amplitude, we can write with exponential time-dependence 
After neglecting the quadratic terms in (4.5), i.e. considering v to be of infinitesi- 

a U v =  vv, (5.1) 

which is identical with (4.7) if we neglect the interaction terms between the dis- 
turbance and the steady motion. 

Defining a scalar product 

( 1 1 ' 7  v) = (v;vl)m + (v;%), + (s;sl), + ( s ; ;gz)m + ( S ' a n  + (s's)mL, 

for functions v and v' which satisfy the boundary conditions (4.4), we find that 
the operators U and V have the following self-adjoint property 

(v', V V )  = (v, Vv'); (d, UV) = (v, Uv')?. (5.2) 
t This means the eigenvalue problem (5.1) is the Euler-Lagrange equation of the 

variational principle S[U(V, UU) - (w, Vw)] = 0. 
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In spite of these relations the eigenvalue (r in the problem (5.1) will in general 
be complex and so will the eigenfunctions. If v is an eigenfunction of (5.1) and 
v* its complex conjugate, then 

or with the aid of (5 .2 )  
cT(V*, UV) = (v*, VV), 

c[(v,  UV*) + (v*, UV)] = (v*, VV) + (v, VV"). 

Since the operators V and U are real, the right-hand side of the last equation 
and the factor of c are real. So 

if v is complex and hence also 

Equations (5.3) and (5.4) are possible because, unlike the ordinary convection 
problem, U and V are in general not definite. 

Nevertheless, we are interested only in real eigenvalues of (5.1) and in particular 
in the question as to which value RT = R$Yhas to be chosen for c = 0. That means 
we are looking for a value @)at which stationary convection sets in, and further- 
more for the lowest of those values. We write 

<v*, UV) = 0 (5.3) 

(v*, VV) = 0. (5.4) 

y(o,,(o) = 0, (5 .5 )  

where the superscript on V(O) means we have replaced RT by R$?, and we now 
consider R$Y as an eigenvalue of the problem (5.5).  

We shall first show that all eigenvalues R$!) are real. If R$) and hence v(0) 
were complex, then 

("(O)", y(o),(o)) = 0, 

and with the definition of V(O) 

where 
R$,)(v(O)*, Wv(0)) + (do)*, VCrl~(O)) = 0, 

' 0  O O O - A 2 0  

0 0 0 0  0 0 

0 0 0 0  0 0 

0 0 0 0  0 0 

-A2 0 0 0 PTA 0 

t o  0 0 0  0 0 

v - V@)-R%)w, W = 1 -  

R$? W is the matrix which contains the fifth row and fifth column of V(O) in the 
respective places and has zeros everywhere else. So V, has the same property of 
self-adjointness as V(0) (equation (5.2)), and hence the second term of (5.6) is real. 
The coefficient of R$Y, which is also real, is 

( d o ) * ,  WVCO)) = - (@)* A2vi0)), + PT(@)* AO'O)), - (Vi0)*A2O(')),. 

If R$? = 0, our statement is right. So let us consider the case R$!) =I= 0; then 

- A2v("+ PT = 0, 
and hence 

(do)*, WV(")) = - ( V ~ ~ ) * A , @ ~ ~ ) ,  = - PT(@')*AB(")),, = PT([i3j#(o)*] aj8(0)),, (5.7) 
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which is positive unless 8(0) E 0. The case 8co) E 0 leads to the uninteresting case 
d o )  = 0. So the only possibility is that the eigenvalue R$? is always real. 

A further necessary condition that the convection first sets in as a stationary 
motion is that the growth rate v is negative for values R, which are smaller than 
R$) because otherwise R$) would not be the lowest critical value. If we consider 
in (5.1) the dependence of c and v on R, we have to require av/aRT 3 0 for 
RT = R2). 

By differentiating (5.1) with respect to R, a t  RT = R$? we find 

(ag/aR,) U(O) V(O) = YCo) &J/aT, + Wdo)  (5.8) 

in addition to equation (5.1). 
Equation (5.8) is an inhomogeneous equation for av/aRT, and since we may 

anticipate that (5.1) has solutions for all values RT, (5.8) has solutions as well. 
Then it is necessary that the inhomogeneous part be orthogonal to the solution 
of the homogeneous part of (5.8) 

(aa/aRT) (do), U(0)dO)) = ( d o ) ,  WdO)). 

The right-hand side is positive as we saw in (5.7). So if the physical parameters, 
described by the dimensionless numbers (2.9), (2.10) are such that the motion 
sets in as stationary convection we have 

( d o ) ,  U(O)V(O)) > 0, (5.9) 

which we shall need later when we discuss the stability of the non-linear steady 
solutions. 

Equations (5-1) and (5 .5 )  admit solutions which separate the vertical and 
horizontal dependence and which satisfy the equation 

A,v+a2v = 0 (5.10) 
in horizontal planes. 

For every value of the overall wave-number a, (5 .5)  is an eigenvalue problem 
of ordinary differential equations. By looking at the matrix operator V we see 
that the variables v, and g, can be separated from the rest of the variables. Fur- 
thermore, v2 E 9, = 0 is the only solution (see Chandrasekhar 1961). Without 
solving the remaining problem we mention some properties of its solutions. 
There exists a lowest eigenvalue R$? which is not degenerate. The components 
2rl, 8, and s of the corresponding eigenfunction are even with respect to the middle 
of the layer while g1 is odd. The neutral curve R$!) (a,) attains its minimum for 
a finite value a:. 

6. Non-linear steady solutions and their stability 

expansion 

when the amplitude 8 is small but finite and the parameter R, does not deviate 
much from its marginal value Rg), so that we can also write 

Solutions of the non-linear equation (4.6) can be approximated by a formal 

(6.1) 2, = € d o )  + €221(1) + €3V(2) + . . . , 

R, = R$?) + ER~I) + s2R'2) + . . .. (6.2) 
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Since R, is an externally given parameter, we regard (6.2) as the definition of e 
because we shall see that the values R(") are determined by certain existence 
conditions. 

Substituting (6.1) and (6.2) into the stability equations we can apply the usual 
perturbation theory 

0- = d O ) + S d 1 ) + € 2 d 2 ) +  ..., 
v" = 6(01+ &j(l) + &(a + . . . , 

Thus we see that for the lowest order in e the stability equations reduce to (5.1) 
with R, = B!$) and 0- = d o )  and the stationary equations reduce to (5.5). 

If we now restrict the class of disturbances to those which have the same over- 
all wave-number a as the steady solutions, then we know that (5.1) has no positive 
eigenvalues do) and that the highest eigenvalue is zero. For do) = 0 and the 
same wave-number the equations (5.1) and (5.5) become identical. The vertical 
dependence of the disturbances is the same as for the steady state while the 
horizontal dependence may be different. So let us write 

@(O) = fw, $0) = f . ,  (6.3) 

where f is a column matrix whose elements depend only on the vertical co- 
ordinate xjAj. The functions w and 8 satisfy the wave equation (5.10), whose 
bounded solution we may write in the form 

f N  - I w = 3 C,W,, 8= ~C,G,, 
m=-N m 
mi 0 

w, = exp (ik,.r), 8, = exp (ik,.r), 

where k,,,, k, are two-dimensional wave vectors with 

Ik,12 = ]k,12 = a2, 

and r is the position vector in the horizontal plane. In  order that the steady 
solution in (6.4) be real, we require that for each k, there is a k-, = -k, 
with C-, = (3%. Note that no summation convention is used for sums over the 
particular solutions w,. We choose the normalization 

+ N  

m=-N 
E ICmI2 = 1 

for the steady state. 
At second-order in E the stationary system is 

(6.6) - B(l)W@(O) + &(@(O),  v(0)) = V(0) $). 

This is an inhomogeneous equation for dl) ,  whose homogeneous part has non- 
trivial solutions. Forming the scalar product with equation (6.6) and any such 
solution do)' and using the self-adjoint property of V0), we find 

- R(1) ( ~ ( o ) ' ,  WvCO)) + ( ~ ( o ) ' ,  &(&'), &")) =   or, v(0) &)) = ( @ ( I ) ,  r(0) &") = 0. 

This is a condition which can be satisfied by choosing a special value R(9  
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With the explicit expression for Q and the symmetry of the functions do) 
we see that each component of &(do) ,  d o ) )  has the opposite vertical symmetry to 
the respective component of do). Hence 

(do)’, &(do), do))) = 0. 

From equation (5.7) we know that (do)’, WdO)) f 0 if we choose do)’ = do). Hence 

R(1) = 0. 

Then the analogous stability equation becomes 

a(UUC0) @) + Q ( C ( O ) ,  do)) + &(v(O), c(0)) = JAO) GW, (6.7) 

with the existence condition 

dU(,CO)’, UCO) $0)) + (&V, Q(@), ~ ( 0 ) )  + &(do), $0)) )  = 0. 

The second term is found to be zero by the same argument as above. Then choos- 
ing do)’ = 8 O )  we know from equation (5.9) that the coefficient of dl) is unequal 
to zero and hence dl) has to be zero. 

At this place we should discuss the case of other boundary conditions. For the 
conclusion R(l) = dl) = 0 the symmetry property of the linear functions has been 
used. But for unsymmetric boundary conditions which are different at the top 
and bottom of the layer, for instance if the lower surface is rigid and the upper 
surface free, the symmetry argument no longer holds. Nevertheless, without a 
magnetic field R(l) and dl) vanish even for unsymmetric boundary conditions, 
as will be shown by Schluter et al. (1965), whiIe magnetic effects can yield con- 
tributions to R(l) and &) in the unsymmetric case. The respective integrals are 
trilinear in the linear solutions and hence the horizontal average is unequal 
to zero only if the linear steady-state solutions have regular hexagonal structure 
such that their k-vectors add to zero. This is the formal reason why in such a case 
the regular hexagonal cell-pattern has a different stability behaviour. A similar 
asymmetry argument holds if one considers temperature dependence of the 
material coefficients such as viscosity; see Busse (1962), Palm (1960) and Segel 
(1965). 

In order to find differences in the behaviour of various steady solutions we have 
to go to higher approximations. Before doing so let us discuss some features of 
the solutions of (6.6) and (6.7) for Rcl) = dl) = 0. 

When we substitute the linear solutions into the inhomogeneous terms of (6.6) 
and use .Lo) = gf) = 0, we obtain for the fourth component apart from the factor 

That the latter expression vanishes can be verified by using the fact that via) and 
gp) are components of (6.3) and hence have the same horizontal dependence w 
with A,w + a2w = 0. In  the same way we conclude that 
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Thus the expression (6.8), i.e. the fourth component of &(do), do)), vanishes. The 
second component of &(do), d o ) ) ,  which contains terms quite analogous to those 
in (6.8), is zero too. Since the matrix operator V separates w2 and g2 from the rest 
of the variables, there is a solution of (6-6) with 

(6.9) 2 9 2  - 0. 
Considering the analogous equation (6.7) for the disturbances one finds that the 
second and fourth components of & ( 8 O ) ,  do)) cancel with the respective components 

(1) = 

of &(do), 6(O) )  Thus 

as well. The rest of the inhomogeneous terms of (6.6) have the form 

G(kk . k,, xj:jhj) wkwl ck q. 
kl 

So (6.6) has a solution of the form 

?A1) = x F(+kl ,  x j q  CkC,WkWl) 
kl 

where F is a column matrix and 

The analogous form for the solutions of the equations (6.7) is 

+kl U-’kk. kp 

‘8’) = x F(#k,, XjAj) (CkO,Wk.iTlf C k q G k W , )  
kl 

(6.10) 

(6.11) 

(6.12) 

We now consider the next order of e in the equations (4.6) and (4.7), expecting 
to find a splitting up of the eigenvalues c. 

(6.13) 

The existence conditions are that the scalar product of the left-hand sides of 
(6.13) with any solution do)’ of the homogeneous part of (6.13) vanishes. 

1 
I 

- R(2)W&N + &(&), ~ ( 0 ) )  + &(v”J), #)) = V(0) &3, 

(ZlU(0) E(0) - R(Z)W6(0) + &(@, 6‘0)) + &(v(O), 60,) + &(fj(l), ?$O)) 

+ &(V”‘O), ,#)(l)) = VCO) E(2) .  

(6.14) 

- R@)(@)’, W@)) + (~(0)’) &(@, ~ ( 0 ) )  + &(@), @)) = 0, 

&)(v(O)’, u(0) 6K““) - R(2)(#3’, W@))  + ( ~ ( 0 ) ’ )  &(v(U, 603) 

+ & ( d o ) ,  + &(V”‘l’, W‘O’) + &(m, 0)) = 0. 

Substituting the representations (6.3), (6.4)) and (6.11)) (6.12) into the inhomo- 
geneous terms of (6.13) and using the relations (6.9) and (6.10) we see that the 
first, third, fifth, and sixth components of & are trilinear forms in ckwk, whose 
coefficients depend only on the vertical co-ordinate and the three possible scalar 
products between the three occurring k-vectors. Taking do)’ = fwz as the funda- 
mental solution of the homogeneous part of (6.13) and recalling that the second 
and fourth components off are zero, the first of the existence conditions (6.14) 
can be written 
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where we have integrated over: the vertical co-ordinate. The over-bar means 
a horizontal average. Nl is a constant which with the aid of (5.7) is known to be 
positive. The parenthesized symbol in the equation (6.15) is an abbreviation for 
a function L(&, $km, &,). In  the following, both notations will be used for the 
same function. Since q5-,,, = - +,,, it should be clear what a minus sign in an 
argument of the parenthesized symbol means. Since the expressions in (6.11) 
are symmetric in k and 1, we can assume that the function L(&, g5k,, #[,) is 
symmetric in the second and third variables. 

We now restrict the disturbances to those which have the same k-vectors as 
the steady-state functions, i.e. Ern = w,. Then the coefficients in the representa- 
tion (6.12) are also symmetric in k and I, and we can write the second existence 
condition (6.14) analogously to the first. 

The constant N ,  is positive, when convection sets in as a stationary motion 
(cf. equation (5.9)). The horizontal average in (6.15) and (6.16) is zero unless in 
each term the sum of the k-vectors is zero. So the terms with two k-vectors 
contribute only if m = n, while those with four k-vectors contribute only if 

(i) k =  n, l= -m; 

(iii) m = n, k = -1,k + n,l =+ -n.  
or (ii) 1 = n ,k  = -m, m $; -n; 
or 

Thus (6.15) yields 

- nm 

9 - n 

- nm - n,m - mm 
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After dividing by C, the nth equation is identical with the (-n)th equation 
(n = 1, ..., N) .  

From (6.16) it  is found that 

R(~)N&, = ~ ( ~ ) N ~ O ~ + C  
m 

- nm - mm 

*--n 

The left side of the latter equation cancels with the last term of the right side 
apart from the last term of (6.17). Then using the symmetry in the second and 
third variables of L(&, cjkm, $lm) equations (6.15) and (6.16) take their final form 

B2)N1 = 2 TnmIC,rL12 (n = 1, ..., N ) ;  (6.18) 
N 

m = l  

+ N  w 

0 = d2)N20n+ C TnmCnCZCrn (n = - N ,  ..., - 1,1,  ..., N ) ;  (6.19) 
m = - N  

From the definition of the function L($kl, $knz, $lrn) 

the matrix T can be derived: 

for m = + n ,  

, otherwise. 

the following properties of 

(6.20) 

Note further that for m = n or m = - n the elements of T are equal to each other. 
Since T is symmetric, TnrnCZCn is Hermitian and hence all eigenvalues d2) 
in (6.19) are real. The equations (6.19) have non-trivial solutions Om if and only 
if the characteristic equation 

det (N2d2)6nm+17nmCgCn) = 0 or det (N2d2)6nm/[Cn12+Tnm) = 0 (6.21) 

is satisfied. The question whether or not the equation (6.21) has positive roots 
can be decided with a simpler equation in which the positive factor N2/ IC,l 
is omitted. We can see this, for instance, by forming Rayleigh's quotient. So 
the stability conclusions are unchanged if we consider the equation 

(n,m = - N ,  ..., - 1,1,  ..., N )  det [ 2 d 2 ) ~ ? ~ ~ +  T,,] = 0 

instead of (6.21). After subtracting the mth column from the (-m)th column 
in the foregoing determinant and adding the ( - n)th row to the nth row we find 



126 Dietrich Lortz 

with the aid of (6.20) that N eigenvalues d 2 )  are zero. The rest of the eigen- 
values satisfy the characteristic equation 

det [d2)S,, + T,,] = 0 (6.22) 

The equation (6.22) and the equation (6.18) together with the normalization 
condition (6.5) are the basic relations for the following discussion. Since the linear 
and first-order problems were not explicitly solved, the elements of the matrix T 
are unknown. But T has the symmetry property and its diagonal elements are 
equal to each other. This is sufficient for deriving a general stability criterion. 

(n, m = 1, . . . , N ) .  

Equations (6.1 8), together with the normalization condition 

represent an inhomogeneous system of ( N  + 1) linear equations which determine 
the ( N  + 1) values R(2), 1C1l2,. . ., lCN12. This means: not every linear solution is 
an approximate to a steady non-linear solution with arbitrarily small amplitude, 
because the coefficients in the linear superposition (6.4) are determined by the 
non-linearities apart from an arbitrary phase constant. Furthermore, the direc- 
tions of the k-vectors have to be chosen such that the solutions IC,[z of (6.18) 
are positive. This is a constraint on the matrix T. 

Letting Trim = dA,m +B,m, 

where d is the diagonal element of T and all elements of A are equal to one, then 
B is a symmetric matrix whose diagonal elements vanish. Equations (6.18) and 
(6.22) thus become 

b = B,,IC,12, b N1R(2)-&d, (6.23) 

(6.24) 
respectively. 

It should be realized that the constant b is zero for the two-dimensional motion, 
i.e. when N = 1. So a solution with positive b has a larger value of B2) and hence 
less amplitude than the two-dimensional solution. 

We are now going to show that if b is positive then (6.24) necessarily has posi- 
tive roots. If d is negative, i.e. the value R(2) for the two-dimensional solution is 
negative, then the coefficient of (d2))N-1 is negative. So in this case, according to 
the sign rules of Descartes, there are positive roots of (6.24) for all values of b, 
which would mean there is no stable solution a t  all. But the method described 
is appropriate only if the motion begins with arbitrarily small amplitude. There 
may also be non-linear solutions which have finite amplitude at the critical point, 
for instance in cases with negative R o .  

N 

m = l  

det (d2) a,, + dA,, + B,,J = 0,  

Now let us consider the cased > 0. The solution of (6.23) may be written 

ICn12 b X  (B-')nm, 
m 

The absolute term of the polynomial (6.24) is 

det (dA + B )  = det (dB-lAB+ B )  = det ( B )  det (dB-lA + 6 ) ,  

(6.25) 
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where 6 is the unit matrix. With the aid of (6.25), we obtain 

~lCl12 ... 1+--- -1 -1 -1 -1 -1 

1 0 0 ... 0 0 

b 

Hence 

............................................. i I 

452 det (dB-lA +6) = I . . . . . . . .  
b I 1 ......................................................... 

... dlcnlz 
b 

0 0 0 0 1 
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Thus if det B is negative, our statement is proved, because the absolute term is 
negative in that case. So let us next consider the case det €3 > 0. By subtracting 
any row in (6.24) from all others we first notice that all coefficients of the poly- 
nomial are linear in d ,  because all principal minors are. In  particular (6.24) can 
be written in the form 

(d2))N- [&CBi,] (0-(2))~-2+ ... +detB+d[N(d2))N-l+ ... 
nm 

+detB(l/b)C lCvrJ2] = 0 (N  > 2).  (6.26) 

According to the sign rule of Descartes there are at  least two positive roots for 
det B > 0 if d is zero, because all roots are real and the coefficients have at least 
two sign changes, Now suppose there exists a positive d such that all zeros of 
(6.26) are negative, i.e. no coefficient of the polynomial is negative. Then there 
must be a value do such that at least one coefficient, say that of 

(d2))”, 
is equal to zero, while none of the others is negative. Since the constant term is 
positive for all d, all zeros are negative for d = do. 

On the other hand, since all zeros are real, the zeros of the derivative of (6.26) 
with respect to d2) are located between the zeros of (6.26). In  particular all zeros 
of the derivative are negative and so are the zeros of all higher derivatives. But 
the 11th derivative has a vanishing constant term and hence has a vanishing root. 

m 

O < v < N -  1, 
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This is a contradiction. Thus (6.26) has a t  least two positive roots for all positive 
d when det B is positive. 

The remaining case det B = 0 does not occur for b > 0, because for det B = 0 
the equations (6.23) for IC,,12 have only solutions if 

N 

n1=1 
z blC,lZ = 07 

which is not possible for positive b. 
Next we show that for a solution with negative R(2), positive d2j-values exist. 

If no root d 2 j  were positive, then T,, in equation (6.22) would be a positive semi- 
definite matrix. In  particular 

0 < C ICn12TnmlCm12 = ICn12N1R(2), 
nm 1L 

and this is obviously a contradiction for R@) < 0, Nl > 0. 

finite amplitude is unstable unless 
So we can formulate the stability criterion. A steady solution with small but 

0 < NlR(2) G gd. 

A measure for the amplitude is for instance the average density of the kinetic 
energy or the horizontal average of the vertical heat transport. The case of 
negative R@j means that there is a solution for R,  smaller than R$) because e2 
in (6.2) is positive. Such a solution may be called subcritical. Since &d is the 
value of Nl R(2) for the two-dimensional solution the final form of the stability 
criterion is: A steady solution with small but $finite amplitude i s  unstable if it is 
subcritical or if it  has smaller amplitude than the two-dimensional solution. 
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